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Abstract. The problem of a relativistic ‘free’ Dirac particle in a one-dimensional box, i.e., at
the box, but not confined to the box, is considered. A four-parameter family of self-adjoint
extensions of the momentum operatorP = −ih̄12

d
dx is obtained, as well as sub-families of

boundary conditions for which this operator transforms as a vector. Physical conditions (self-
adjointness and not spontaneously brokenC5T symmetry in the subspace of positive energies)
imposed upon the Hamiltonian operator, which is a function of the momentum operator, give
the physical Hamiltonian operator for this problem. The physical self-adjoint extension ofH

corresponds to the periodic boundary condition.

1. Introduction

The free particle (i.e.,V (x) = 0) in one dimension is certainly the simplest example of non-
relativistic quantum mechanics. However, a free particle in a one-dimensional box is not so
simple due to mathematical subtleties appearing with boundary conditions, operator domains,
and self-adjointness of the involved operators. As was shown in [1], only for the boundary
conditionsφ(0) = φ(L) 6= 0, φ′(0) = φ′(L) 6= 0, the momentum operator transforms as
a vector and the parity symmetry operation of the Hamiltonian is not spontaneously broken.
So, a non-relativistic particle in a box is ‘free’ (i.e., at the box, but not confined to the box)
if the domain of the Hamiltonian operator consists of functions satisfying these boundary
conditions. In this case the Hamiltonian is the kinetic energy, being this operator the only
self-adjoint extension which is a function of the momentum operator in a box. Clearly, this
quantum case does not correspond to the classical motion of a particle bouncing between the
walls.

In relativistic quantum mechanics the mathematical subtleties are also present. The
relativistic Dirac particle in a finite or infinite square well, has been considered in the literature
using different approaches [2]. A detailed study of the possible boundary conditions for a
relativistic Dirac particle inside a box, as well as their non-relativistic limits, has recently been
considered [3]. In this problem, there are two types of boundary conditions. A necessary
condition in order to have a confined particle in a box is that the probability current density
j (x) = 9+α9 vanishes at the walls:j (0) = j (L) = 0. Likewise, a necessary condition
in order to have a ‘free’ particle in a box is that the probability current density must satisfy:
j (0) = j (L) 6= 0, which would permit us to say that the walls are transparent to the current.
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However, the question about what is really a relativistic ‘free’ Dirac particle in a box, i.e.,
which boundary condition defines the domain of its Hamiltonian?, as far as we know, has not
been considered in the literature. It is important to note that, for the quantum system consisting
of a relativistic ‘free’ Dirac particle on a line with a hole (point interactions), we have a similar
story. We can imagine bringing the extremities of the box close to each other, making it look
like a circle with a hole [4]. So our results are also applied to this system. Physically, since
a very localized interaction can be due to the interaction of the particle with an impurity or a
local defect in a solid, for example, the case ‘free’ obviously corresponds to a particle that it
is not disturbed by the point interaction.

The aim of this paper is to characterize a ‘free’ Dirac particle in a one-dimensional box,
that is, we want to obtain the Hamiltonian operator which answers to the minimal questions
for a ‘free’ particle in a box, i.e., which boundary condition defines its domain. We choose the
Hamiltonian operatorH as a function of the momentum operator. The domain ofP essentially
induces the domain ofH .

One might be interested in studying covariant boundary conditions for this problem, but
without losing any generality, the formal Lorentz covariance of a dynamical equation can be
used to choose the privileged frame in which the intrinsic nature of the physical system is the
simplest one. If we want to know the energy eigenvalues, the convenient privileged frame is
that in which the space-time Lorentz transformations are frozen, and the box is at rest in a
determined space region. Once we have obtained the energy spectrum in the privileged frame,
the energy-momentum two-vector (in 1+1 dimensions) may be calculated in any inertial frame.

In section 2, we first obtain the most general four-parameter family of boundary conditions
for which the momentum operatorP = −ih̄12

d
dx is self-adjoint, but this is only a necessary

condition for having a momentum operator in quantum mechanics. It can be seen that for
all these extensions, the probability current density does not vanish at the walls of the box.
In second place, of all these infinite number of extensions we select those for which the
momentum operator transforms as a vector under the parity operation. Even though this
operatorP corresponds to a physical self-adjoint momentum operator, we demand that the
Hamiltonian operator, function of it, be also self-adjoint. However, there still exist infinite
boundary conditions included in the domain ofH . In the third place, we choose those
boundary conditions for which the Hamiltonian isC5T invariant. So, we have only the
periodic and antiperiodic boundary conditions. Finally, of these two boundary conditions
we select the periodic boundary condition since for it, theC5T symmetry of the self-
adjoint Dirac Hamiltonian operator, in the subspace of positive energies, is not spontaneously
broken.

2. Relativistic results in a box

For a relativistic Dirac particle inside a one-dimensional box in the interval� = [0, L], the
momentum operatorP in � is defined by

Pψ(x) =
(
−ih̄12

d

dx

)
ψ(x). (1)

Using the Dirac representation we writeψ = (
φ

χ

)
, which denotes a two-component

wavefunction (‘spinor’) withx ∈ � and 12 the 2× 2 unit matrix. The relevant Hilbert
space isH = L2(�) ⊕ L2(�), with the scalar product denoted by〈ψ1, ψ2〉 =

∫ L
0 ψ

+
1ψ2 dx,

whereψ+ is the adjoint ofψ .
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Let us choose the domain ofP as

Dom(P ) =
{
ψ =

(
φ

χ

)}∣∣∣∣ψ ∈ H, a.c. in�,Pψ ∈ H, ψ fulfils ψ(L) = Uψ(0), U−1=U+

}
(2)

where hereafter a.c. means absolutely continuous functions. Since Dom(P ) is dense and

〈Pψ, η〉 − 〈ψ,Pη〉 = ih̄[(ψ+η)(L)− (ψ+η)(0)] = 0 (3)

then,P is symmetric for allψ, η ∈ Dom(P ), and self-adjoint because Dom(P ) = Dom(P ∗),
whereP ∗ = −ih̄12

d
dx is the adjoint ofP [5]. In appendix A, the domain ofP is directly

obtained using the von Neumann theory of self-adjoint extensions of symmetric operators.
Thus, there exists a four-parameter family of boundary conditions, or equivalently, a

four-parameter family of self-adjoint extensions ofP ≡ Pθ,µ,τ,γ = −ih̄12
d

dx with its domain
given by (2), where the unitary matrix may be written asU = (v u

s w

)
wherev = eiµeiτ cosθ ,

u = eiµeiγ sinθ , s = eiµe−iγ sinθ andw = −eiµe−iτ cosθ , with 0 6 θ < π , 0 6
µ, τ, γ < 2π (see appendix A). It is worth pointing out that for all these self-adjoint extensions,
j (0) = j (L) 6= 0.

Among the boundary conditions included in Dom(P ) we have the periodic condition
ψ(0) = ψ(L), obtained by makingθ = 0, {µ 6= τ } = π/2, 3π/2; and the antiperiodic one
ψ(0) = −ψ(L), with θ = 0,µ = τ = π/2, 3π/2.

Let us define the parity operator as

5ψ(x) = βψ(L− x) (4)

whereβ = σz in the Dirac representation.
The momentum operator under the parity operation must transform as a vector, so,

5P5−1ψ = −Pψ (5)

for all ψ ∈ Dom(P ). In addition, the parity-transformed spinor must verify5ψ ∈ Dom(P ),
which implies that

σz = UσzU. (6)

Thus, the parametersv, u, s, w, satisfy the following conditions

v2 − us = 1 vu− uw = 0 vs − sw = 0 w2 − us = 1.

SinceU is a unitary matrix the parametersv, u, s, w, are related by (A.11), in which case we
obtain two sub-families of unitary matrices:
Sub-family 1:u 6= 0, s 6= 0, v = w, w2 − us = 1, uū = ss̄, ss̄ +ww̄ = 1,wū + sw̄ = 0:

U =
(
w u

s w

)
. (7)

Sub-family 2:u = 0, s = 0, v,w = ±1, withU any of the matrices:

U = ±12 ± σz. (8)

As possible relativistic Hamiltonians for a ‘free’ particle in� we choose the following
operators, functions of the momentum operator:

H(Pθ,µ,τ,γ ) ≡ Hθ,µ,τ,γ = cαPθ,µ,τ,γ +mc2β (9)

whereα = σx andβ = σz in the Dirac representation. The momentum operator isPθ,µ,τ,γ
with domain given by (2) with the matrixU included in (7) or (8). In order to define the
Hamiltonian operator properly, for a fixed set of parametersθ , µ, τ , γ , besides its formal
expression (9), its domain must be specified. SinceH is a function ofP , the domain ofH
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is induced, essentially, by that ofP . If ψ belongs to Dom(P ), thenψ belongs to Dom(H)
if Pψ ∈ Dom(α) andψ ∈ Dom(β). Since the domain of the matricesα andβ is the whole
space, all these conditions are satisfied. Finally, ifψ ∈ Dom(P ) thenψ ∈ Dom(H(P )).

Even though the operatorP in (9) corresponds to a physical self-adjoint momentum
operator, we must assure that with the boundary conditionsψ(L) = Uψ(0) whereU is given
by (7) and (8),H is self-adjoint. For this, it is necessary thatH be symmetric and also that
Dom(H) = Dom(H ∗), whereH ∗, defined by the same formal operator (9) is the adjoint of
the differential operatorH . In appendix B, we show that this occurs only if

w = w̄ u = −ū s = −s̄ (10)

for the sub-family 1, and without restrictions on the four matrices of the sub-family 2.
So, we write the domain ofH as

Dom(H) =
{
ψ =

(
φ

χ

) ∣∣∣∣ψ ∈ H, a.c. in�,Hψ ∈ H, ψ fulfils ψ(L) = Uψ(0), U−1=U+,

with U given by (7) with (10), andU given by (8)

}
. (11)

It can be verified that the boundary conditions given in (11) are included in the most general
family of self-adjoint extensions ofH , studied in [3].

Since we want to characterize a ‘free’ particle in a one-dimensional box, of all boundary
conditions included in the domain ofH , we choose those boundary conditions for which the
Hamiltonian isC5T invariant. In analogy with the results in 3 + 1 dimensions, the Dirac
wavefunction transforms under the discrete transformation5 in the Dirac representation
according to (4), that is,59(x, t) = σz9(L − x, t), and under theT , C and C5T
transformations according to

T9(x, t) = σz9(x,−t)
C9(x, t) = σx9(x, t)
C5T9(x, t) = σx9(L− x,−t)

(12)

where9̄ is the complex conjugate of9.
We require

(C5T )H(C5T )−1ψ = Hψ (13)

for allψ ∈ Dom(H) andC5Tψ ∈ Dom(H), that is, theC5T transformed spinor must obey
the same boundary conditions asψ does, which implies that

σx = UσxU. (14)

This matricial relation is not satisfied by the matrixU of the sub-family 1, but it is only satisfied
by the two following matrices of the sub-family 2:

U = ±12

thus, the domain ofH becomes

Dom(H) =
{
ψ =

(
φ

χ

) ∣∣∣∣ψ ∈ H, a.c. in�,Hψ ∈ H, ψ fulfils ψ(L) = ±ψ(0)
}
. (15)

In summary, we have the periodic and antiperiodic boundary conditions. The symmetry
operationC5T commutes with the Hamiltonian, which is a function of the momentum
operator, only if the operatorP is any of the two self-adjoint extensions with periodic or
antiperiodic boundary conditions.
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As is well known, if a symmetry operation commutes with the Hamiltonian, then it
generates a symmetry of the system if furthermore, the ground state ofH is also an eigenstate
of the symmetry operator. On the other hand, the symmetry operation is spontaneously broken
if the ground state ofH is not an eigenstate of the corresponding symmetry operator. For
this to occur, it is necessary that the ground state be degenerate. In the following, we use this
definition to select among the periodic and antiperiodic conditions.

The Dirac eigenvalue equation is given by

H(P )ψn(x) =
[
cα

(
−ih̄12

d

dx

)
+mc2β

]
ψn(x) = Enψn(x). (16)

The common eigenfunctionsψn(x) of the formal Hamiltonian and momentum operators in
(16), in the subspace of positive energies, have the form

ψn(x) ∼
(

1
h̄ckn

En+mc2

)
eiknx (17)

where the discrete momentum values are

kn = 2nπ

L
n = 0,±1,±2, . . .

if {µ 6= τ } = π/2, 3π/2 (upper sign in (15): periodic boundary condition), and

kn = (2n + 1)π

L
n = 0,±1,±2, . . .

if µ = τ = π/2, 3π/2 (lower sign in (15): antiperiodic boundary condition).
The eigenvalues of the Hamiltonian are, respectively,

En =
[
h̄2c2

L2
(2nπ)2 + (mc2)2

]1/2

(18)

and

En =
[
h̄2c2

L2
((2n + 1)π)2 + (mc2)2

]1/2

. (19)

It can be seen that the ground state of (18) in the subspace of positive energies is not degenerate
and corresponds ton = 0,

E0 = mc2. (20)

Likewise, the ground state of (19) in the subspace of positive energies is degenerate and
corresponds ton = 0 andn = −1,

E0 = E−1 =
[
h̄2c2π2

L2
+ (mc2)2

]1/2

. (21)

Therefore, theC5T symmetry ofH(P ) is not spontaneously broken only if its domain consists
of functions satisfying the periodic boundary condition.

Finally, we can say that the physical momentum operator in�, is the operatorP =
−ih̄12

d
dx with the domain given by

Dom(P ) =
{
ψ =

(
φ

χ

) ∣∣∣∣ψ ∈ H, a.c. in�,P ∈ H, ψ fulfils ψ(L) = ψ(0) 6= 0

}
(22)

since the Hamiltonian operator which describes a ‘free’ particle in� isH(P ) = cαP +mc2β,
with

Dom(H) =
{
ψ =

(
φ

χ

) ∣∣∣∣ψ ∈ H, a.c. in�,Hψ ∈ H, ψ fulfils ψ(L) = ψ(0) 6= 0

}
. (23)

Clearly, in the non-relativistic limit, the wavefunction and its derivative are also periodic.
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3. Conclusions

We have shown that only for the periodic boundary conditionψ(0) = ψ(L), obtained by
making: θ = 0, {µ 6= τ } = π/2, 3π/2, the momentum operatorP = Pθ=0,{µ6=τ }=π/2,3π/2
transforms as a vector under parity, and theC5T symmetry of the self-adjoint Hamiltonian
operator, function ofP : H(P ) = cαP + mc2β, in the subspace of positive energies, is not
spontaneously broken. Therefore, this is the Hamiltonian operator in the interval�. Since
the spectrum of theC5T invariant Hamiltonian operator has a negative part, the ground state
only makes sense either in the subspace of positive or negative energies. We restrict ourselves
to the subspace of positive energies because we want to describe a single ‘free’ electron.

Finally, we can say that a relativistic free Dirac particle in a one-dimensional box is ‘free’,
that is, with transparent walls to the probability current, only if the Dirac spinor satisfies the
periodic boundary condition at the walls. Likewise, for a ‘free’ particle on a line with a hole,
the physical boundary condition, and self-adjoint extension of the Hamiltonian with point
interaction [6], is the periodic boundary condition:ψ(0+) = ψ(0−) 6= 0 (in this case it is
enough to replace: 0→ 0− andL → 0+). So, the particle is not disturbed by the point
interaction atx = 0, that is, it is ‘free’.

Appendix A

The domain ofP = −i12
d

dx (usingh̄ = 1) must be chosen so thatP be a symmetric operator,
meaning that every state in the Hilbert space could be arbitrarily well approximated by states
in the domain ofP , and (using integration by parts)

〈Pψ, η〉 − 〈ψ,Pη〉 = i[(ψ+η)(L)− (ψ+η)(0)] = 0 (A.1)

for all ψ, η ∈ Dom(P ).
Certainly, if we choose for the domain ofP

D =
{
ψ =

(
φ

χ

) ∣∣∣∣ψ ∈ H, a.c. in�,Pψ ∈ H, ψ fulfils ψ(0) = ψ(L) = 0

}
(A.2)

thenP is symmetric. However,P is not self-adjoint since the domain ofP ∗ is larger than that
of P (recall that the domain ofP ∗ is Dom(P ∗) = {ν = (

ν1

ν2

)|ν ∈ H, a.c. in�, (P ∗ν) ∈ H},
with 〈Pψ, ν〉 − 〈ψP ∗ν〉 = 0, for allψ ∈ Dom(P ) andν ∈ Dom(P ∗)).

Widening the initial domain ofP we achieve that both domains coincide, in which case
P will be self-adjoint.

In order to verify if P has self-adjoint extensions we use the so-called von Neumann
method of deficiency indices [5]: if the solutionsψ± of the eigenvalues problems

P ∗ψ±(x) = −i12
d

dx
ψ±(x) = ±iψ±(x) (A.3)

belong toH and the dimensions of the space solutionsn± verify n+ = n− 6= 0, thenP has
self-adjoint extensions. It is not difficult to check that in our case the following spinors are
normalized independent solutions of (A.3) that belong to the Hilbert space:

ψ(1)
+ (x) =

√
2eL√

e2L − 1

(
1
0

)
e−x ψ(2)

+ (x) =
√

2eL√
e2L − 1

(
0
1

)
e−x

ψ
(1)
− (x) =

√
2√

e2L − 1

(
1
0

)
ex ψ

(2)
− (x) =

√
2√

e2L − 1

(
0
1

)
ex.

(A.4)

Thus, the spaces of solutionsψ+ have dimensionsn+ = n− = 2, therefore, there exist families
of 22 = 4 parameters of self-adjoint extensions.
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A general theorem of von Neumann states that if we specify a unitary 2×2 matrixM and
then add to the domain ofP all vectors of the form

ψ(x) = (a b)
(
ψ
(1)
+ (x)

ψ
(2)
+ (x)

)
+ (a′ b′)

(
ψ
(1)
− (x)

ψ(2)(x)

)
+ ψ̃(x) (A.5)

whereψ̃(x) belongs to the domainD and(
a′

b′

)
= M

(
a

b

)
(A.6)

with a, b, a′ andb′ arbitrary complex numbers, thenP defined on this enlarged domain will
be self-adjoint for each choice ofM [5].

The vectorψ(x) in the enlarged domain satisfies

ψ(0) =
(
φ(0)
χ(0)

)
=

√
2√

e2L − 1

(
aeL + a′

beL + b′

)
(A.7)

ψ(L) =
(
φ(L)

χ(L)

)
=

√
2√

e2L − 1

(
a + a′eL

b + b′eL

)
. (A.8)

Now, we assume that the boundary conditions can be written in the following form:(
φ(L)

χ(L)

)
= A

(
φ(0)
χ(0)

)
(A.9)

where the 2× 2 matrixA will be specified later.
Substituting relations (A.7) and (A.8) in (A.9) and using (A.6), we obtain, for alla andb,

A = 12 + eLM

12eL +M
. (A.10)

It can be shown that ifM is unitary, then matrixA fulfilsA+ = A−1, that is,A ≡ U =
(
v u

s w

)
is also unitary and the parametersv, u, s, w, satisfy the conditions

vv̄ + uū = ss̄ +ww̄ = vv̄ + ss̄ = uū +ww̄ = 1

vs̄ + uw̄ = vū + sw̄ = 0.
(A.11)

We may choosev = eiµeiτ cosθ , u = eiµeiγ sinθ , s = eiµe−iγ sinθ andw = −eiµeiτ cosθ ,
with 0 6 θ < π , 0 6 µ, τ, γ < 2π . Finally, we can say that the family of self-adjoint
extensions ofP ≡ Pθ,µ,τ,γ = −ih̄12

d
dx , has indeed the domain given by (2).

Appendix B

As is well known, the quantum dynamics requires thatH be a self-adjoint operator, that is
Dom(H) = Dom(H ∗), whereH ∗, defined by the same formal operatorH , is the adjoint of
H . Its domain is defined as [5]:

Dom(H ∗) =
{
η =

(
η1

η2

) ∣∣∣∣η ∈ H, a.c. in�, (H ∗η) ∈ H

}
with

〈Hξ, η〉 − 〈ξ,H ∗η〉 = ih̄c[(ξ+σxη)(L)− (ξ+σxη)(0)] = 0 (B.1)

for all ξ ∈ Dom(H) andη ∈ Dom(H ∗).
If Dom(H) is fixed,H ∗ will be the adjoint ofH if it has the maximal domain consistent

with the vanishing of(ξ+σxη)(L)− (ξ+σxη)(0), but such that Dom(H ∗) = Dom(H). In order
to obtain the common domain, let us suppose, for example, that the boundary conditions(

ξ1(L)

ξ2(L)

)
= U

(
ξ1(0)
ξ2(0)

)
(B.2)
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with U given by (7) (sub-family 1) or (8) (sub-family 2), are included in the domain ofH .
By replacing (B.2) in (B.1), and since the vanishing of the two components ofξ at the walls
of the box cannot be made, it may be verified that a necessary and sufficient condition for the
vanishing of(ξ+σxη)(L)− (ξ+σxη)(0) is(

η1(L)

η2(L)

)
=
(
w̄ −ū
−s̄ w̄

)(
η1(0)
η2(0)

)
(B.3)

for the sub-family 1, and(
η1(L)

η2(L)

)
= U

(
η1(0)
η2(0)

)
(B.4)

with U any of the matrices

U = ±12 ± σz
for the sub-family 2.

To make sure that Dom(H ∗) = Dom(H), these boundary conditions, (B.3) and (B.4),
must be equal in each case to (B.2), and this is satisfied only if

w = w u = −ū s = −s̄
for the sub-family 1, and without restrictions on the four matrices of the sub-family 2. So,
the ‘free’ Hamiltonian operator (9) corresponding to a ‘free’ particle has the domain given by
(11).
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